Select Page

Archive – Q3 week 3 – 20 – 21

Week of 2/22 – 2/26 – 

 
Please Refresh every time you open– this page is changing often!
 
The 4 day – A, B, C, D cycle looks like this:
                                                       Day                               Period
                                                                           2                       3                       4       
                
  Monday                         In class:                          Lab                   Lab               Single Class
                                   Remote:                          Lab                   Lab               Single Class
 
                                       In class:         B          Single Class        LAB                   LAB
                                                          Remote:                     Single Class        LAB                   LAB
 
                                         In class:              C          Single Class              LAB                    LAB
                                   Remote:                     Single Class        LAB                    LAB
 
                                        In class:          D               Lab                   Lab              Single Class
                                   Remote:                            Lab                   Lab              Single Class
                 
 
This weeks 5 day Schedule:
2/22  – Monday –  “A” Day         – period 2,3 (Lab) –     2(A,C) 3(A)  AP CHEMISTRY
                                                            – period 2,3 (Lab) –  R   2(A,C) 3(A) REMOTE INSTRUCTION
                                                             – period 4 – I   3(C) 4(A,C) AP CHEMISTRY 
                                                             – period 4 – R  3(C) 4(A,C) REMOTE INSTRUCTION
2/23  – Tuesday –  “B” Day         period 2,  –  I   2(B,D) 3(D) AP CHEMISTRY
                                                            -period 2, –  R   2(B,D) 3(D) REMOTE INSTRUCTION
 
                                                            -period 3,4 (LAB) – I   3(B) 4(B,D) AP CHEMISTRY
                                                            -period 3,4 (LAB) – R  3(B) 4(B,D) REMOTE INSTRUCTION
2/24  –  Wednesday-  “C” Day  – period 2, –  I    2(A,C) 3(A)  AP CHEMISTRY
                                                             – period 2, –  R   2(A,C) 3(A) REMOTE INSTRUCTION
                
                                                           -period 3,4 (LAB) – I.  3(C) 4(A,C) AP CHEMISTRY 
                                                           -period 3,4 (LAB) – R  3(C) 4(A,C) REMOTE INSTRUCTION
 
2/25  –  Thursday –  “D” Day    – period 2,3 (Lab)  –  I   2(B,D) 3(D) AP CHEMISTRY
                                                           – period 2,3 (Lab) –  R  2(B,D) 3(D) REMOTE INSTRUCTION
  
                                                         – period 4 – I  3(B) 4(B,D) AP CHEMISTRY
                                                         – period 4 – R 3(B) 4(B,D) REMOTE INSTRUCTION
 
2/26  – Friday –  “A” Day           – period 2,3 (Lab) –     2(A,C) 3(A)  AP CHEMISTRY
                                                           – period 2,3 (Lab) –  R   2(A,C) 3(A) REMOTE INSTRUCTION
                                                             – period 4 – I   3(C) 4(A,C) AP CHEMISTRY 
                                                             – period 4 – R  3(C) 4(A,C) REMOTE INSTRUCTION

 
2/22  – Monday –  “A” Day         – period 2,3 (Lab) –     2(A,C) 3(A)  AP CHEMISTRY
                                                            – period 2,3 (Lab) –  R   2(A,C) 3(A) REMOTE INSTRUCTION
                                                             – period 4 – I   3(C) 4(A,C) AP CHEMISTRY 
                                                             – period 4 – R  3(C) 4(A,C) REMOTE INSTRUCTION
 
The Red and the Green team are remote today. 
 
 
Period 2, Period 4:
 
1. Review of quantum numbers, the current model of the atom
Quantum Number form 1920 Key p.pdf
 
2. Continue with more Electron configurations, orbital diagrams
    We completed the Quantum Number worksheet 2.pdf in class,
PLEASE PRINT THESE:
 
Quantum Number worksheet 2.pdf
View Download
 
Atomic Structure 4b -Electron configuration.pdf
 
Electrons are arranged from lowest energy to higher energy = Aufbau Principle
 So they fill from lower n to higher n  and from lower energy orbitals (l) to higher energy orbitals. Electrons fill sublevels in order ( s,p,d,f).
 
Electron are arranged in n = principle energy levels
                                                    l  = sublevels
                                                 ms =  individual orbitals (actual 3 -d shape where pairs of electrons can exist)
 
Every Electron has a unique set of 4 quantum numbers (including spin msPauli Exclusion Principle
These quantum numbers describe how the electrons are arranged in the atom based on energy.
 
                                      The basic organization is principle energy level (n = 1, 2, 3, etc.) – “shell”
 
                                                                                     sublevel  (s,  p,  d,  f, ) – type of orbital and all of its orientations
                                                                                                   l = 0,  1,   2,  3
 
                                                                                      orbital (individual orbital of a single orientation of a sublevel)
                                                                                                        m= -l , 0, +l
This arrangement uses notation that describes the organization of the electrons in principle energy levels and sublevels. The exponent is the number of electrons in the TOTAL sublevel that includes all the orbitals of different orientation of the same sublevel.
 
s = 1 orbital   (l = 0, ml = 0)
p = 2 orbitals (l = 1, ml = -1,  0, +1)
d = 5 orbitals (l = 2, ml = -2, -1, 0, +1, +2)
f  = 7 orbitals (l  = 3, ml = -3, -2, -1, 0, +1, +2, +3)
g =  ?
 
Electron configuration of Al:           Nucleus:  1s22s22p63s23p1
 
Orbital notation for Al:
Each box represents a single orbital.
Which electrons are the most stable? Unstable?
*Connections – Our quantum numbers refer to specific energy levels allowable by each quantized element.  The arrangement of electrons in quantized energy orbitals that were solutions to the Erwin Schrodinger equation (quantum numbers) are actually hidden in the periodic table that was already arranged according these energy levels (unbeknownst to Mendeleev and Moseley!!) The periodic table that we use is a condensed version that does not insert the  f block ( l = 3) because it would not fit on most pages!!!!
 

 

 Atomic Structure 4b -Electron configuration.pdf
 
Atomic Structure 4b -Electron configuration key.pdf
View Download
Another very good animation that will review electron configuration :
Download file and open in Fire Fox.
 
ElectronConfiguration.html
Download
Period 3: 
 
1. Absorption Demo: 
 
2.Ruben’s Tube Demo:
wave behavior demo: – Standing waves  animation- 
Ruben’s Tube demo complete – measure speed of sound in propane.
                                                       Beat frequency!
 
 
Ruben’s Tube Demo explained  – Grodski

 

 

 electron configuration 1   electron configuration 2
Today’s lesson (Period 2):
2/22  – Monday –  “A” Day – Homework – 
 
1.  Please complete Atomic Structure 4b -Electron configuration.pdf worksheet and review the key.
     If you need I have optional lectures posted above but do not worry I will complete in class.
    
2: Please complete AP periodicity and Electron Configuration Form 1  based on the presentations below and the blue book. ( I have scanned the pages that you need).
 
IF YOU WANT TO Download the Blue Book for the homework:
 
Blue book Chapter 7 p.pdf
View Download
Powerpoint Presentation 1:
 

 

 
Blue BooK:

Tonight’s Form: 

AP Periodicity and Electron Configurations Form 1 2021

 
End of Monday!

2/23  – Tuesday –  “B” Day         period 2,  –  I   2(B,D) 3(D) AP CHEMISTRY
                                                            -period 2, –  R   2(B,D) 3(D) REMOTE INSTRUCTION
 
                                                            -period 3,4 (LAB) – I   3(B) 4(B,D) AP CHEMISTRY
                                                            -period 3,4 (LAB) – R  3(B) 4(B,D) REMOTE INSTRUCTION
 
 
The Blue and the Orange Team are Remote today.
 
Period 2, Period 3:
 
1. Review of last nights Form.
 
AP Periodicity and Electron Configurations Form 1 KEY p.pdf
View Download
 
2. Overlapping of Principle energy levels,  Advanced electron configurations, shorthand
 
3. Completion of  Atomic Structure 4b -Electron configuration.pdf worksheet.
 
Atomic Structure 4b -Electron configuration.pdf
 
Atomic Structure 4b -Electron configuration key.pdf
View Download
 
Todays Presentation for overlapping Principle Energy levels – slide 146 – 
PES – slide 49 – 56
 
*Connections – When we write electron configurations we are really writing the energy levels of each different electron defines by the 4 unique quantum numbers (3 of which are solutions to the Schrodinger equation).
 
Pauli Exclusion Principle – Electrons must have a set of 4 unique quantum numbers.
The implication of this work was to fully understand why the electron “shells” or principle energy levels held even number of  electrons.  The principle also extended to explain why electrons cannot occupy the same quantum state and thus must “stack” in the atom.  This “stacking” repeats and results in chemicals having different chemical properties based on their valence electrons – outermost electrons.
 

               Kernel = Core electrons = Most stable electrons
 
                Valence electrons = Unstable electrons – used in chemical bonding
 
Electrons fill a groundstate (stable lowest energy) atom by following the Aufbau Principle.  If they gain energy as in the case of photon of specific energy they will move away from the nucleus and into an excited state – (unstable high energy) state.  This state is identified by an electron configuration that is not following the Aufbau Principle and thus not filling a lower energy orbitals (closer to the nucleus) first before filling higher energy orbitals (farther away from the nucleus). The excited state configuration represent the electron arrangement of an atom just before it emits the photons in a bright line spectrum
 
Using orbital diagrams (boxes for the shapes of orbitals) we can also identify excited state configurations:
Remember that electrons in the same type of orbital will occupy empty orbitals first before pairing up – HUNDS RULE.
 

*Notice the electrons in the same box (orbital) have the opposite electron spins while the electrons in the same sub level have parallel spins (going in the same direction).  These unpaired electrons lead to paramagnetism (the attraction to a magnetic field).

 
Period 4:
 
1. Absorption Demo: 
 
2.Ruben’s Tube Demo:
wave behavior demo: – Standing waves  animation- 
Ruben’s Tube demo complete – measure speed of sound in propane.
                                                       Beat frequency!
 
3. Start the homework:
2/23  – Tuesday –  “B” Day – Homework 
 
1.  Please complete the form below using the resources as directed.
 

2/24  –  Wednesday-  “C” Day  – period 2, –  I    2(A,C) 3(A)  AP CHEMISTRY
                                                             – period 2, –  R   2(A,C) 3(A) REMOTE INSTRUCTION
                
                                                           -period 3,4 (LAB) – I.  3(C) 4(A,C) AP CHEMISTRY 
                                                           -period 3,4 (LAB) – R  3(C) 4(A,C) REMOTE INSTRUCTION
 
The RED team and the Green Team are remote today.
Period 2, Period 3:
 
Important Vocabulary that you will need in this unit:
 
Z  = #of protons    synonyms   Z = nuclear charge and   Z = Atomic Number (Thanks Moseley!)
 
Zeff = effective nuclear charge – (the nuclear charge that the electron feels as a result of electron – electron interactions ( screening or electron – electron repulsions).
 
n = principle energy level, the larger the n the larger the number of core electrons 
                                                      and larger the orbitals. n defines the proximity of electrons to the  
                                                      nucleus.  The farther that an electron is from the nucleus the lower the  
                                                      coulombic  attractions that the electron feels and thus is less stable           
                                                      than electrons closer to the nucleus.
 
Armed with ZZeff, and you can explain almost everything in periodicity and electron  
                                                                                                                                           configurations.
 
****Since we are continuously evaluating the energy levels of electrons that are bound in a atom or ion in this unit Ionization energy values are very helpful in determining stability of an electron.  
 
Ionization Energy the energy needed to remove an electron (Einstein’s Binding Energy).
                                             Electrons with higher IE are more stable (takes more energy to remove!)
                                             Electrons with lower IE are less stable (takes less energy to remove!) 
 
Example for Na (sodium):                  IE1          +            Na     —->      Na+        +         e- 
                                                      first Ionization Energy
 
Ionization Energy is often described as the First Ionization Energy (1st IE) or the Second Ionization Energy (2nd IE) and so on…       

     

                                                                   IE2          +           Na+     —->      Na+2        +         e-
                                                              Second Ionization Energy

So the 2nd IE is the energy needed to remove the second electron.  Would it require the same amount as the 1st IE?  No it would require much more because Na+ the second electron would be removed from a filled principle energy level!! These are core electrons that are more stable. Do not lose site that IE is a measure of electron stability.

 
Stable Electrons =    High coulombic attraction to nucleus =    lower energy orbitals =   High IE
   Lower energy                           Lower n, Higher Zeff                                  closer to the nucleus
 
Successive IE values have verified the existence of Valence electrons!!! Look at the diagram below.
Notice when a successive IE “JUMPS THROUGH THE ROOF”.   
                    
                              Na (atom) :   1s22s22p63s                                            Na+1 (atom):  1s22s22p6
 
           Removing valence electron (less stable)                Removing a core electron (more stable)
                          3s electron has higher n                                       2p electron has lower n            
                         3s electron has lower Zeff                                    2p electron has higher Zeff
                                   Z = 11                                                                                       Z = 11
                           
                            IE =   500 kJ/mol          —— 9 x increase——->         IE2 = 4560 kJ/mole
                           removing valence e     “jumps through the roof”           removing core e
 
                                                               Thus Na has 1 valence electron                               
 
1.  Classwork worksheet / review /discussed the notes above
 
– Wrote the electron configuration of Uranium and Ag / Ag/Shorthand/ and U+6
 
                             “ALL of  This is about Energy “
 
Classwork:
Electron Config and Periodicity worksheet .pdf
View Download
 
Classwork Key:  
Electron configuration worksheet 1 Key p.pdf
View Download
2. REVIEW and Hand back Form 2 HW/review Form
 
 
Period 4:
 
3. Periodic Trends Lab 19 – 
File needed:

Periodic Trends Excel 3 graphs 2012 student file.xlsx

 

Periodic table Trends Lab 20 ? – activity instructions: (this will be classwork)
 
Please fill out the Ionization energy, Atomic Radii, and Electronegativity graph using table S of the OLD regents reference tables.
 
Please write and discuss every element who bucks the trend on the word document that you pasted the line graph for ionization. Remember that ionization energy is a measure of stability. Use your knowledge of Z, Zeff, and electron – electron interactions to justify why some atoms or groups of atoms are not following the trend (IE going up as you move across a period and IE decreasing as you move down a group). Please number and bullet each point.  There may be a group of elements that may not be following the trend. Please discuss them as well.
Graded as a lab activity. Do not hand this in yet.
 
                               
 “ALL of  This is about Energy ” Lecture.
 

 

 
                             “ALL of  This is about Energy “
 
 
Powerpoint Presentation 2:

 

Electron Affinity Animation:

 
2/24  –  Wednesday-  “C” Day  Homework:
1:  Please complete the form below:
 
End of Wednesday..

2/25  –  Thursday –  “D” Day    – period 2,3 (Lab)  –  I   2(B,D) 3(D) AP CHEMISTRY
                                                           – period 2,3 (Lab) –  R  2(B,D) 3(D) REMOTE INSTRUCTION
  
                                                         – period 4 – I  3(B) 4(B,D) AP CHEMISTRY
                                                         – period 4 – R 3(B) 4(B,D) REMOTE INSTRUCTION
 
The Blue Team and the Orange Team are Remote Today.
 
Period 2, Period 4:
Ionization Energy          vs.             Electron affinity
 Ionization Energy (IE) Electron Affinity (EA)
 Energy needed to remove an electron  Energy released or absorbed when electron is added
 measures stability of current electrons  measures stability of added electron
            Creates positive ions (cations)                     Creates negative ions (anions)
   ∆H = positive (endothermic)  ∆H = negative (exothermic) or positive (endothermic)
  .50 kJ/mol     +    Na    —–>     Na+     +      e            F          +        e    ——>      F–      +    328 kJ/mol
 1681 kJ/mol    +    F      —–>     F+        +      e-     53 kJ/mole  +   Na        +       e     ——>      Na
 Larger the IE the more stable the e  Larger the negative EA the more stable the added e
 Used for all atoms – Clear Trend  Used primarily for nonmetals but Trend is not clear/ many exceptions

 

 
Given the following EA for the Halogens – group 17
Fluorine (F) -328 kJ/mol
 
Chlorine (Cl) -349 kJ/mol
 
Bromine (Br) -324 kj/mol
Iodine (I) -295 kJ/mol
 
 
The EA “generally decreases” down a group because the increased shielding that occurs with more orbitals of electrons (core) between the outermost electrons (valence) when n increases is offset by the larger Z that occurs as you move down a group.  As you move down a group n is the biggest factor why the outermost electron become less stable and held more loosely.  That is why valence electrons are less stable than core electrons.  
 
With Fluorine we would expect it to have the highest EA of the group since its valence electrons are in the smallest n (n= 2) and should release the greatest amount of energy (show more stability) as it grabs one electrons BUT IT DOES NOT.  Because Fluorines electrons exist in a very small space with n= 2 the extra electron will be destabilized a bit by the electron – electron repulsions that will occur in this small space.  The Zeff for this electron that is added will not be as high as we would expect because of the crowded small space for the electron in the second principle energy level.  The rest of the group, follows the expected trend because their valence electrons in exist in larger and larger orbitals as the n increases resulting in lower Zeff due to the increased distance from the nucleus.
 
EA like IE also has EA2 and these values are almost always VERY positive as it will take energy to add an electron to an already negative particle (unless the Z is large enough to offset). This never the case for small values of n.
 
Paramagnetism – weak attractions to a magnetic field.
Diamagnetism –  No attractions to a magnetic field.
 
            
A):  Properties of transitional metals-
      Diamagnetism/Paramagetism  8-3,8-54 to 8-56 slides in powerpoint 1
 
B): Reviewed the questions on the HW form 3 by 
1.  The 4s fills first due to its shape and its penetration closer to the nucleus.
2. Divergence/crossover of 4s orbitals to explain electron configurations of transitional elements that do not seem to follow the Aufbau Principle:  Examples Cr and Cu.
 
3. Divergence also explains the these elements have multiple oxidation states 
    AND ALL lose their electrons in the s orbital first because it is now a higher energy unstable orbitals compared      to the filling d orbital.
 
4.  Complete Electron Config and Periodicity worksheet.
 
Classwork:
Electron Config and Periodicity worksheet .pdf
View Download
 
Classwork Key:  
Electron configuration worksheet 1 Key p.pdf
    
Divergence/Energy inversions Lecture if you cannot get enough:
 
Period 3:
 
1. Periodic Trends Lab 20? – 
File needed:

Periodic Trends Excel 3 graphs 2012 student file.xlsx

 

Periodic table Trends Lab 20 – activity instructions: 
 
Please fill out the Ionization energy, Atomic Radii, and Electronegativity graph using table S of the OLD regents reference tables.
 
– Table S of the Regents Reference tables contains the values for First Ionization EnergyElectronegativity, and Atomic Radii. Please make 3 graphs by using my excel file above (it will make a line graph and a 3d graph) of the three trends.  All you have to do is enter the values in the spreadsheet up to atomic # 54 (Xe) for the three Periodic Trends.  Please cut and past the 3 linear graphs into doc that you can print and follow the instructions below:
 
Electronegativity that measures how much an atom attracts electrons IN A BOND.  It really is a value that combines Z, Zeff, and n. You will notice that the Nobel Gases (last column on the periodic table) do not have Electronegativity values because they do not bond so their attraction to electrons in a bond cannot be measured.
Elements with dashes in the table have zero values.
 
For the Electronegativity and Atomic Radii Graphs please Identify the elements that belong to the Alkali family (group 1), Alkaline Earth (Group 2), Halogens (Group 17), and the Noble gases (group 18).
 
For the First IONIZATION ENERGY GRAPH:
 
Please write and discuss every element who bucks the trend on the word document that you pasted the line graph for ionization. Remember that ionization energy is a measure of stability. Use your knowledge of Z, Zeff, n, and electron – electron interactions to justify why some atoms or groups of atoms are not following the trend (IE going up as you move across a period and IE decreasing as you move down a group). Please number and bullet each point.  There may be a group of elements that may not be following the trend. Please discuss them as well.
 
Graded as a lab activity. 
 
2/25  –  Thursday –  “D” Day Homework:
 
1. Please complete the following worksheet and review with the key.
 
Electron Config and Periodicity worksheet 3.pdf
View Download
 
Electron Configuration worksheet 3 Key p.pdf
View Download
 

2/26  – Friday –  “A” Day           – period 2,3 (Lab) –     2(A,C) 3(A)  AP CHEMISTRY
                                                           – period 2,3 (Lab) –  R   2(A,C) 3(A) REMOTE INSTRUCTION
                                                             – period 4 – I   3(C) 4(A,C) AP CHEMISTRY 
                                                             – period 4 – R  3(C) 4(A,C) REMOTE INSTRUCTION
 
The RED team and the Green Team are Remote today.
 
Today’s Notes:
Properties of transitional metals – notes
     
 We learned that divergence of the 3d orbital is responsible for the properties of the transitional metals which are the elements in the d – block.  The d 0rbital unlike the s and the p holds a maximum of 10 electrons and combined with the outermost s orbital that is very close in energy with the outermost d orbital provides a “super sublevel” where there 12 electrons reside in what becomes sort of a valence shell for these elements. 
1. High Conductivity of Electricity – High number of mobile electrons (low IE) in metallic bonding
 
2. The Largest Paramagnetism  Largest number of degenerate orbitals that could contain the  
                                                                 largest number of unpaired paralleled spin electrons.
 
3. Multiple Oxidation States –  Many choices for stability of electrons based on minimizing 
                                                             electron – electron repulsions given the 6 orbitals (s and d) that  
                                                             electrons can move to and from. Transitional elements cannot  
                                                             achieve noble gas configurations because they cannot lose or gain  
                                                             the high number electrons that this would require. 
                                                             Fe would have to LOSE 8 electrons OR Gain 10 electrons to achieve  
                                                             Kr or Xe electron configurations. Fe has too high of a Z to lose 8  
                                                             electrons and its Z is not high enough to gain 8 electrons.
 
4.  Valence Electrons from Multiple Principle Energy Levels (n) – 
                                                            Electrons are lost by metals because of relatively low IE but 
                                                            electrons  lost by d – block metals are from the “super sublevel”
                                                            of (n) s and (n- 1) d electrons that are very similar in energy.
 
5.  Form Colored Solutions –   Crystal Field Splitting!!!!!   Remember!!!!
 
Because they can have high oxidation states due the large number of electrons in their “super sublevel” they can draw electrons pairs from other molecules (ligands) to form stable complexes that cause the degenerate d orbital to split into 2 energy levels.  This splitting of the d orbital based on the electrons being drawn into the d orbitals of the d – block metal because of the large coulombic attraction of d block elements that have high Z and large oxidation states creates an opportunity for these elements to absorb photons of visible light (negative theory of light) resulting in the complexes that transmit a photons of light that is not absorbed.
 
         Mn+7  in  KMnO4 = purple (in the oxidation titration lab) ——>  Mn+2  (Clear)
 
Cu oxidized by nitric acid (in the % by mass of copper in Brass lab) = blue green solution and we used a spectrophotometer to measure how much light is missing (absorbed):
*Remember Cu solutions are blue-green because they make complexes in water:
 
                                                 Cu+2   +   6H2O     —–>     [Cu(6H2O)6]+2
                       


The d orbitals that will interact directly with the incoming ligand (electrons from oxygen in water) will Destabilize that d orbital because of electron – electron repulsions and thus that orbital will contain electrons with lower Zeff.

 The d orbitals that do not directly interact with the incoming ligand are not as destabilized and thus a GAP is created and the degenerate d orbitals are split into 2 levels by a gap small enough in energy that photons of visible light can match!

 
 
FROM WEEK 6 of QUARTER 2!
Connections:
In Lab 13 – Volumetric REDOX Titrations – We used Fe+2 ions to Standardize the KMnOsolution.
The MnO4  solution  oxidized the Fe+2  into Fe+3 .  The Fe+2  reduced the The MnO4  solution to turn from purple (Mn+7 form) to colorless (Mn+2).  
 
IF the the Fe+2  solution sits in volumetric flask it slowly changes into Fe+3 as oxygen in the flask and in the solution oxidizes the the Fe+2 solution. Notice the development of color in the 24 hour period.  
 
 I have to make the  Fe+2  solution fresh each day.  Why is there a color developing?
As the Fe+2  becomes  Fe+3  the solution has a greater ability to absorb wavelengths of visible light because Fe+3 makes a complex ion with water that attracts water with such high Coulombic attractions that the water’s lone pair of electrons are pushed into the iron’s (Fe) d – orbitals directly interfering with some d – orbitals and not others based on their orientation in space.  The orbitals that “feel” the oxygens electrons become destabilized (increase in energy) and there is a spit in the energy level between these orbitals that were initially the same energy.
 
This splitting of d orbital energy levels provides a pathway for electrons to transition to higher energy levels when low energy visible light energy (photons) are absorbed.  Not all of the wavelengths of light are absorbed thus the ones that are not absorbed are what we see.
The spectrophotometer picks up the transmittance (which is the what is absorbed or missing from our eye.)

A photon of light of a certain wavelength is absorbed by electrons in lower energy d orbitals that can now transition into higher energy d orbitals (that split due to electrons being pulled directly into the orbitals). The absorbed photon is now missing from the entire spectrum of light that is illuminating the complex and the color shown is what is left.
 
Sorry for all the notes.. I need to be monitored..
 
 
Period 2, Period 4: 
 
1. Review yesterday’s worksheet:
 
Electron Config and Periodicity worksheet 3.pdf
View Download
 
Electron Configuration worksheet 3 Key p.pdf
View Download
 
2. Start the Periodic Trends lab
 
Period 3:
 
1. Periodic Trends Lab 20? – 
File needed:

Periodic Trends Excel 3 graphs 2012 student file.xlsx

 

Periodic table Trends Lab 20 – activity instructions: 
 
Please fill out the Ionization energy, Atomic Radii, and Electronegativity graph using table S of the OLD regents reference tables.
 
– Table S of the Regents Reference tables contains the values for First Ionization EnergyElectronegativity, and Atomic Radii. Please make 3 graphs by using my excel file above (it will make a line graph and a 3d graph) of the three trends.  All you have to do is enter the values in the spreadsheet up to atomic # 54 (Xe) for the three Periodic Trends.  Please cut and past the 3 linear graphs into doc that you can print and follow the instructions below:
 
Electronegativity that measures how much an atom attracts electrons IN A BOND.  It really is a value that combines Z, Zeff, and n. You will notice that the Nobel Gases (last column on the periodic table) do not have Electronegativity values because they do not bond so their attraction to electrons in a bond cannot be measured.
Elements with dashes in the table have zero values.
 
For the Electronegativity and Atomic Radii Graphs please Identify the elements that belong to the Alkali family (group 1), Alkaline Earth (Group 2), Halogens (Group 17), and the Noble gases (group 18).
 
For the First IONIZATION ENERGY GRAPH:
 
Please write and discuss every element who bucks the trend on the word document that you pasted the line graph for ionization. Remember that ionization energy is a measure of stability. Use your knowledge of Z, Zeff, n, and electron – electron interactions to justify why some atoms or groups of atoms are not following the trend (IE going up as you move across a period and IE decreasing as you move down a group). Please number and bullet each point.  There may be a group of elements that may not be following the trend. Please discuss them as well.
 
Graded as a lab activity. 
 
2/26  – Friday –  “A” Day  – Homework – 
 
 
1PES (Photon Emission Spectroscopy) – experimental evidence of electron configurations.
 
All that we have been learning regarding the arrangement of electrons in the Current Model of the atom – Wave Mechanical or Electron Cloud would be pure nonsense UNLESS there was no experimental evidence to support it.
 
The Three most important experiments include:
 
Ionization Energies – 1st, 2nd, etc. – The WHOA amount that proves Core electrons and Valence e.
                                            Also proves that electrons are filling energy shells as we move across the 
                                            periodic table.
Magnetic Behavior –  measures a whole integer of magnetic force due to electrons with unpaired  
                                            electrons having the same spin that create a magnetic moment – proves 
                                            that orbitals of the same sublevel are degenerate.
 
PES (Photon Emission Spectroscopy) – An application of the photoelectric effect that will measure                                             the energy and the relative amount of electrons each energy level in an                                                     atom or ion. It proves the electron configurations are correct as we know it                                             OR the Aufbau Principle.
 
 
Please watch my lecture on the PES  and compete the form below that will be on auto-reply.
 
Lecture: 

 

Form: 

PES – Photon Emission Spectroscopy Form – 20/21

End of the 3rd week!